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Partial-moment functions are proposed as a flexible way to characterize and estimate asymmetric effects
of inputs on output distributions. Methods for econometric estimation of partial-moment functions,
and tests for input symmetry and location-scale distributions, are presented. A Monte Carlo study
demonstrates properties of proposed tests. A study of Ecuadorian potato production illustrates the
methods. Hypotheses of input symmetry and location scale are rejected. A risk-value model based
on partial moments implies that fertilizer is risk increasing and fungicides and labor are risk reducing
in potato production, whereas an expected utility model based on full moments has the opposite
implications.
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The objective of this article is to propose the
use of partial-moment functions as a flexible
way to characterize, estimate, and test asym-
metric effects of inputs on output as devia-
tions from a reference value, such as the mean
or a behaviorally determined threshold. This
research contributes to the growing body of
literature on methods to characterize agricul-
tural output as a random variable determined
by complex interactions between management
decisions and exogenous random events such
as weather and pests (e.g., Antle 1983; Antle
and Goodger 1984; Nelson and Preckle 1989;
Ker and Goodwin 2000; Ker and Coble 2003;
Hennessy 2009a, b). This article demonstrates
how standard econometric methods can be
used to estimate and test partial-moment func-
tions, by generalizing the moment-based meth-
ods of Antle (1983).

An important motivation for the partial-
moment approach, as compared with other
approaches in the literature, such as param-
eterization of a beta or other flexible distri-
bution function, is to link empirical repre-
sentations of output distributions to decision
models that utilize partial moments. There
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is a long history of research on decision
making under uncertainty that takes asymme-
try of distributions into account, using par-
tial moments as well as third and higher-
order full moments. The relevant literature
includes research on safety-first preferences
(Roy 1952;Atwood 1985; Bigman 1996); mean-
semivariance models (Markowitz 1959; Hazell
1971); target return models (Fishburn 1977;
Holthausen 1981; Tauer 1983); models that
incorporate downside risk aversion (Anderson,
Dillon, and Hardaker 1980; Menezes, Geiss,
and Tressler 1980; Antle and Goodger 1984;
Antle 1987, Di Falco and Chavas 2006, 2009;
Groom et al. 2008; Koundouri et al. 2009); and
the finance literature on value-at-risk (Jorion
1996; Rockafellar and Uryasev 2000) and stud-
ies emphasizing asymmetric risk (Černý 2004;
Lence 2009). Another relevant branch of lit-
erature presents alternatives to and general-
izations of expected utility theory, including
prospect theory (Khaneman and Tversky 1979;
Tversky and Khaneman 1992), regret and dis-
appointment models (Bell 1982, 1985), and the
more recent generalization of those concepts in
risk-value models (Jia, Dyer, and Butler 2001;
Butler, Dyer, and Jia 2005; Delquié and Cillo
2006). The objective functions used in risk-
value models are functions of partial moments,
and I show in this article that they provide a nat-
ural way to link general decision models with a
partial-moment representation of production
technology.
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The next section of this paper discusses the
processes generating asymmetric output distri-
butions, and shows how partial moments can
be used to represent output distributions and
their relationship to input choice.The following
sections present methods for the economet-
ric estimation and testing of partial-moment
functions. Monte Carlo simulation is used to
investigate the properties of the proposed tests
for statistical significance and symmetry of
partial-moment functions. These methods are
then illustrated with the example of Ecuado-
rian potato production, an interesting case to
test the partial-moment model because farm-
ers use large amounts of fertilizer to achieve
high yields and apply large amounts of fungi-
cides to control the late blight fungus, a poten-
tially catastrophic risk to potato production.
The concluding section discusses implications
of these methods for research on production
risk.

Output Distributions, Asymmetric Effects
of Inputs, and Partial Moments

In this section I explore the processses gen-
erating output distribution asymmetry and its
relation to input use. The goal here is to show

that the properties of output distributions, and
in particular the effects of inputs on the dis-
tribution’s shape, can be understood to be the
consequence of complex interactions between
the biophysical and management processes
that jointly determine production outcomes.
This understanding is useful in formulating
models and in interpreting the econometric
estimates and test results presented below.

Economic theory posits a production func-
tion q = f (x) where q is output and x repre-
sents inputs (treated here for simplicity as a
scalar). To translate this deterministic concept
into a stochastic model, many researchers have
recognized that in agriculture there is a set
of random factors not under the control of
the decision maker, including weather (tem-
perature, rainfall, solar radiation, hail, wind),
other events that may be weather related
such as pest infestations, and conditions not
readily observed by the manager that affect
productivity, such as soil chemistry and micro-
biological conditions. Thus the agricultural
production function can be written as q =
f (x, w) where w represents these stochastic
factors affecting production. Figure 1 illus-
trates the implications of this stochastic pro-
duction function model for the properties of
output distributions. The right horizontal axis
represents the stochastic input w which follows

Figure 1. Output distribution properties determined by production functions with management
inputs (x) and random inputs (w)
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the distribution φ(w). The positive vertical axis
measures output per unit of land (yield) with
the upper bound g defined as the maximum
output per hectare determined by the crop’s
genetic potential. The negative horizontal axis
measures the probability density of output
given inputs x, denoted as φ(q|x).

Figure 1 shows three examples of possible
production relationships that generate three
different output distribution shapes. Distribu-
tion A occurs with a low level of an input
(xA) which must be applied at a high level to
realize the crop’s yield potential. This could
be the case of an improved crop variety that
responds strongly to high nutrient and water
inputs (interpreting w as rainfall). Alterna-
tively, w could be defined as pest absence, and
x could be interpreted as a pesticide that pre-
vents pest damage. In this case, the mass of the
output distribution is concentrated at low out-
put levels and is right-skewed because there is a
small probability of obtaining a relatively large
output. At the other extreme, distribution C is
the case where a protective input is used at a
high level (xC), so that the output distribution
is concentrated near the upper bound, and is
left skewed. Similarly,Hennessy (2009b) shows
that a left-tail skew may occur if the production
function is concave in the random variable w,as
is the case with C,and cites a result by van Zwet
(1964) that a transformed random variable q =
f (x, w) is more (less) skewed than w when-
ever f (x, w) is increasing and concave (convex),
as illustrated by Figure 1. Hennessy (2009a)
shows that both positive and negative skewness
is possible using a law-of-the-minimum pro-
duction technology. Distribution B represents
a case where the density of w is concentrated
on an approximately linear segment of the pro-
duction function. In this situation, it is possible
for the distribution to be approximately sym-
metric and may even be well approximated by
a normal distribution.

Several facts can be inferred from this
characterization of output distributions. First,
output distributions cannot be normally dis-
tributed, due to the fact that they are derived
from non-linear functions defined on a finite
interval of the real line and can only appear
to be symmetrically distributed over a limited
range of inputs.1 Second, changes in inputs are

1 Some researchers have argued that aggregate yields should
be normally distributed based on the central limit theorem
(Just and Weninger 1999). Others have argued that statisti-
cal properties such as spatial dependence are likely to inval-
idate the central limit theorem (Ker and Goodwin 2000).

likely to have different effects on the positive
and negative tails of distributions, as shown by
distributions A and C. Third, inputs may have
various qualitative and quantitative effects on
the shape of the output distribution, depend-
ing on the type of input, the level of input use,
and interactions between inputs. For example,
as input use increases and the shape of the out-
put distribution goes from positively skewed
to a more symmetrical shape with a higher
mean, it is possible for the variance to increase
or decrease.These observations suggest that a
flexible model is needed to quantify the effects
of inputs on output distributions, where flex-
ibility means that inputs may have different
effects on the positive and negative tails of the
distribution.

To demonstrate the empirical relevance
of the hypothetical distributions in figure 1,
figure 2 presents output distributions derived
from the Ecuadorian potato production data
discussed in more detail below. The data were
stratified into groups with low and high lev-
els of two key inputs, fertilizer and fungicides.
Figure 2 shows histograms of the residuals from
each group, centered on the group means. With
low inputs, the output distribution is positively
skewed, with the mass of the distribution con-
centrated at low outputs. The high-input distri-
bution shows that the mass of the distribution
has shifted rightward toward the production
frontier and has a higher variance, lower skew-
ness, and higher kurtosis than the low-input
case. While suggestive, this graphical analysis
cannot distinguish the effects of the individ-
ual inputs. To do that, we need an econometric
model that is flexible enough to differentiate
effects of individual inputs on the properties
of the distribution.

Measuring Effects of Inputs on Output
Distributions Using Partial Moments

To simplify the following discussion, produc-
tion is defined as a single-period process in
which variable inputs are chosen and applied,
random events then occur, and output is real-
ized,so that inputs can be treated as statistically
independent of output; this assumption can be
relaxed using the methods in the literature for
models with endogenous inputs. As in Figure 1,
production is a stochastic process and output q

Koundouri and Kourogenis (2010) argue that the central limit
theorem will fail for aggregate yields if the number of observa-
tions being aggregated, i.e., the number of acres in production, is a
random variable.
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Figure 2. Frequency distribution of Ecuadorian potato production with low and high input
levels (horizontal scale in tonnes/ha, vertical scale in percent)

is characterized by a probability density φ(q|x)
defined on a finite interval of the real line (0, g).
If q is defined as average product per unit of
a fixed input (e.g., crop yield, milk production
per animal), then g can be defined as a constant
representing the absolute upper bound deter-
mined by the genetic potential of the species.
Under these conditions, the moments of q
provide a unique representation of its distri-
bution (Kendall and Stuart 1977; Antle 1983).
The operator μ1(x) represents the expectation
of q given x, and the operator μi(x), i > 1,
represents the ith central moment of q condi-
tional on x. The central moments of output are
therefore functions of x:

μ1(x) ≡
∫ g

0
qφ(q|x) dq(1)

μi(x) ≡
∫ g

0
{q − μ1(x)}iφ(q|x) dq(2)

i = 2, 3, . . .

The standard definition of partial moments
is based on deviations above and below a ref-
erence point r. Although many studies utilize
the mean as the reference, and I will do that
in this study as well, some studies of decision
models (e.g.,Butler,Dyer,and Jia 2005) suggest

that other reference points may be used by
decision makers. In the case of output dis-
tributions defined as above, for r ∈ (0, g) the
lower or negative partial absolute moments are
μ−

i (x, r) ≡ ∫r
0{q − r}iφ(q|x) dq, and the upper

or positive partial moments are μ+
i (x, r) ≡∫g

r {q − r}iφ(q|x) dq, so that μi(x) = μ−
i (x, r) +

μ+
i (x, r). For reasons that will become apparent

below, it will be useful to utilize an alternative
definition of the partial moments here, in which
the moments are defined relative to the trun-
cated distributions of q defined on (0, r) and
(r, g). Define the probability that output is less
than r as

(3) �(x, r) ≡
∫ r

0
φ(q|x) dq.

Accordingly, the probability density for q less
than r is φ(q|x)�(x, r)−1 and the density for q
greater than r is φ(q|x)(1 − �(x, r))−1. It will
also be useful to define the partial moments
in absolute terms. Thus, the absolute partial
moments for the distributions truncated below
and above the mean are defined as

ηi(x, r) ≡ (−1)i
∫ r

0
{q − r}iφ(q|x)(4)

× �(x, r)−1 dq
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= (−1)i�(x, r)−1μ−
i (x, r)

ϕi(x, r) ≡
∫ g

r
{q − r}iφ(q|x)(5)

× (1 − �(x, r))−1 dq

= (1 − �(x, r))−1μ+
i (x, r).

In th remainder of this article I use the mean
as the reference point; so to simplify nota-
tion,I use �(x) ≡ �(x, μ1),ηi(x) ≡ ηi(x, μ1) and
ϕi(x) ≡ ϕi(x, μ1). From equation (2) it follows
that

μi(x) = (−1)i�(x)ηi(x)(6)

+ (1 − �(x))ϕi(x), i = 2, 3, . . .

If the output distribution is symmetric, then
�(x) = 0.5, and ηi = ϕi, implying that μi = ηi =
ϕi for i even; for i odd, symmetry implies ηi = ϕi
and μi = 0 by equation (6). Thus, rejection of
the null hypothesis of equal partial moments
implies rejection of symmetry of the output
distribution.

Using equation (6), the marginal effect of an
input on the ith moment is

∂μi

∂x
= (−1)i�

∂ηi

∂x
+ (1 − �)

∂ϕi

∂x
(7)

+ ((−1)iηi − ϕi)
∂�

∂x
, i = 2, 3, . . .

Define μ∗
i as the elasticity of μi with respect to

x, and similarly define η∗
i , ϕ∗

i and �∗ as elastic-
ities. Setting ni = (−1)i ηi

μi
and pi = ϕi

μi
, equation

(7) in elasticity form is

μ∗
i = �niη

∗
i + (1 − �)piϕ

∗
i(8)

+ (ni − pi)��∗, i = 2, 3, . . .

Equation (6) shows that �ni + (1 − �)pi = 1,
thus equation (8) shows that elasticities of full
moments with respect to inputs are approx-
imately weighted averages of the partial-
moment elasticities when (ni − pi)�

∗ is small.
Symmetry implies � = 0.5 and �∗ = 0,and thus
μ∗

i = η∗
i = ϕ∗

i for i even. For i odd, symmetry
implies η∗

i = ϕ∗
i and μ∗

i = 0.

Asymmetry, Partial Moments, and Input
Choice

Much of the literature on production risk and
input use has been based on the expected

utility maximization paradigm, with produc-
tion risk represented by the variance of output
which may be a function of inputs (e.g., Just
and Pope 1978; Love and Buccola 1991; Saha
1997; Isik and Khanna 2003). Of course, the
limitations of variance as a measure of risk
have been discussed extensively in the litera-
ture. Some studies have utilized the concept of
downside risk, also within the expected utility
framework,as noted in the introduction. Other
researchers have pointed out the limitations
of expected utility and have introduced more
general frameworks such as prospect theory
and the risk-value model. Here I compare the
expected utility model to the risk-value model
to demonstrate the fact that the two can lead to
substantially different behavioral implications
with the same data.This point is then illustrated
in the case study presented later.

To simplify the presentation,define expected
net returns as μ1(x) − cx > 0, where c is the
price of x normalized by the nonstochastic out-
put price. Let the decision maker’s expected
utility function be U[μ1(x) − cx, μ2(x)], and
define Ui = ∂U

∂μi
. The decision maker chooses

x to satisfy ∂μ1
∂x − c = −U2

U1

∂μ2
∂x , which can be

written in elasticity form as

(9) μ∗
1 − cx/μ1 = R2s2μ

∗
2

where μ∗
i ≡ ∂ ln μi/∂ ln x, si ≡ μi/(μ1(μ1 −

cx)i−1), and R2 ≡ −(μ1 − cx)U2
Ui

is approxi-
mately one-half of the Arrow-Pratt relative
risk aversion coefficient (Antle 1987). Fol-
lowing Pope and Kramer (1979), the the
right-hand side of equation (9) is interpreted
as the marginal risk effect (MRE) of the input,
which in this case is positive (negative) when
the variance is increasing (decreasing) in x.
The MRE is a convenient way to compare the
behavioral implications of alternative decision
models without solving for optimal inputs,
because it is defined in percentage terms; and
in the multiple input case, other inputs are
held constant.

As noted in the introduction, another strand
of the risk literature has recognized that deci-
sion makers may respond to downside risk.
The analysis of downside risk can be imple-
mented with an expected utility function of
the form U[μ1(x) − cx, μ2(x), μ3(x)], implying
a first-order condition

(10) μ∗
i − cx/μ1 = R2s2μ

∗
2 − R3s3μ

∗
3
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where μ∗
i , si and R2 are defined as in equation

(9), and R3 ≡ (μ1 − cx)2 U3
U1

is approximately
one-sixth times the relative downside risk aver-
sion coefficient (Antle 1987). In this model,
input use depends on both Arrow-Pratt risk
aversion (R2) and downside risk aversion (R3),
thus the risk effects of inputs, i.e., the value
of MRE, cannot be inferred from the variance
alone.

Risk-value models provide an alter-
native approach to decision making in
which the objective function is defined as
V[μ1(x), ηi(x), ϕi(x)]. This model is motivated
by research in psychology and economics,
suggesting that decision makers respond
differently to positive and negative deviations
from a reference point such as expected value,
experiencing “disappointment” or disutility
from negative deviations and “elation” from
positive deviations (Jia, Dyer, and Butler
2001). Many decision models in the literature
can be defined as special cases of the risk-value
model, including models based on prospect
theory and expected utility. For example, for
the risk-value model V[μ1(x), η2(x), ϕ2(x)], the
first-order condition for input choice is

(11) μ∗
1 − cx/μ1 = s2(Vηη

∗
2 − Vϕϕ∗

2 )

where s2 is defined above, Vη ≡ −(μ1 − cx)
Vη2
Vμ1

,

Vϕ ≡ (μ1 − cx)
Vϕ2
Vμ1

, η∗
2 ≡ ∂ ln η2/∂ ln x and ϕ∗

2 ≡
∂ ln ϕ2/∂ ln x. In this model, Vη > 0 is inter-
preted as disappointment and Vϕ > 0 is inter-
preted as elation. If inputs have symmetric
effects on output variance, i.e., if η∗

2 = ϕ∗
2 = μ∗

2,
then setting R2 = Vη − Vϕ shows that equa-
tions (9) and (11) are equivalent and that
risk aversion implies Vη − Vϕ > 0. However, if
inputs have asymmetric effects on η2(x) and
ϕ2(x), then the two models do not necessar-
ily have the same risk implications, as rep-
resented by the MRE. For example, in the
mean-variance model with symmetric effects
of inputs, the variance could be increasing in
x, implying that the MRE in equation (9) is
positive, but x also could be downside-risk
reducing, so that the MRE in equation (11)
could be negative. The risk-value model also
can represent other types of preferences—for
example, setting Vϕ = 0, the risk-value model
can take the form of a mean-negative semivari-
ance model. Both the expected utility model
in equation (10) and the risk-value model
(11) can be defined with respect to third and
higher-order moments. Koundouri, Nauges,

and Tzouvelekas (2006) provide an analysis
using expected utility with four moments.

Estimating and Testing Partial-Moment
Functions

In this section, methods are presented for esti-
mating partial-moment functions and testing
the null hypothesis that the effects of inputs on
moments are symmetric, by testing for equal-
ity of parameters of the negative and posi-
tive partial-moment functions. The goal is to
specify the partial-moment functions in a way
that does not impose arbitrary restrictions on
the form of the distribution. Define the first
moment model

(12) q = μ1(x) + e, E(e|x) = 0

where E(e|x) is the expectation of e given x.
Note that we could set μ1(x) = r. Applying the
procedures discussed here would result in esti-
mates of partial moments with respect to the
reference point r. To simplify the discussion,
it is assumed that observations are indepen-
dent; generalizations for dependent observa-
tions are possible with suitable data to estimate
off-diagonal elements of the error covariance
matrix. Using equations (2) and (12),the higher
central moments can be specified as

(13) ei = μi(x) + vi, E(vi|x) = 0, i = 2, 3, . . .

The consistency of the residuals from least
squares estimation of equation (12) can be
used to show that least squares estimation
of equation (13) implemented with êi pro-
duces consistent estimates of the parameters
(Antle 1983). The error e is generally het-
eroskedastic, so use of weighted least squares,
following procedures outlined in Antle (2010),
or a heteroskedastic-consistent estimator, is
appropriate. The errors vi are correlated across
equations, so a heteroskedasticity-corrected
seemingly unrelated regression (SUR) estima-
tor is more efficient than a single equation
estimator.

Using equations (4),(5),and (13),the partial-
moment functions can be specified as:

|e|i = ηi(x) + vin,(14)

E(vin|x) = 0, i = 2, 3, . . . , for e < 0

|e|i = ϕi(x) + vip,(15)

E(vip|x) = 0, i = 2, 3, . . . , for e > 0
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where the expectation operators are defined
with respect to the truncated distributons for
e < 0 and e > 0. Equations (14) and (15) com-
prise a system of two equations similar to a
switching regression model. In most switch-
ing regression models, the econometrician does
not observe which regime an observation
belongs to, but in this case it is possible to clas-
sify observations into the two regimes because
we can observe the residuals which converge
in distribution to e. Therefore, in large sam-
ples, the methods described above for the
estimation of full-moment functions can be
applied to the partial-moment equations (14)
and (15) individually, and under standard reg-
ularity conditions, the linear or nonlinear least
squares estimates will be consistent and asymp-
totically normal. However, as with the full
moments, the errors generally are not inde-
pendent and identically distributed (i.i.d.), so
correction for heteroskedasticity is appropri-
ate. To test the hypothesis of symmetric effects
of inputs, equations (13), (14), and (15) can be
estimated separately, and a Chow test can be
used to test for the equality of the parameters
of equations (14) and (15).

Alternatively, equations (14) and (15) can
be combined into one equation following the
approach suggested by Quandt (1972). Define
the indicator variable δ such that δ = 1 if e < 0
and δ = 0 otherwise. From equations (14) and
(15) it follows that

|e|i = δηi(x) + (1 − δ)ϕi(x) + δvin(16)

+ (1 − δ)vip, i = 2, 3, . . .

Equation (16) can be estimated using the
same procedures described above for the full-
moment model. Standard asymptotic proce-
dures can be used to test for symmetry by
testing for the equality of the parameters of
the partial-moment functions. As an alterna-
tive to asymptotic tests, nonparametric boot-
strap methods suitable for heteroskedastic and
skewed error distributions (the so-called wild
bootstrap) can be used to construct tests, as
discussed further below.

In concluding, it is useful to observe that
the full-moment specification equation (13)
has both similarities and differences with the
partial-moment specification equation (16).
First, if the same functional form is used for
the full- and partial-moment functions, then
equation (16) has twice as many parameters
as equation (13). Thus, the flexibility that the

partial-moment specification affords, by allow-
ing differential effects of inputs on negative
and partial moments, does come at a statisti-
cal cost. Second, it should be noted that apart
from this increase in the number of parameters,
the partial-moment model in equation (16)
is statistically equivalent to the full-moment
specification in equation (13) for even-order
moments and is identical under the symmetry
restriction. However, for odd-order moments
such as the third, equations (13) and (16) are
not equivalent, because the dependent vari-
able in equation (13) has values that are both
positive and negative, whereas the dependent
variable in equation (16) is always positive.
This fact means that equation (16) will fit
the data differently than equation (13) and
suggests that the flexibility afforded by the
partial-moment specification may be partic-
ularly important for the estimation of odd-
order moments, as borne out in the case study
presented below.

Monte Carlo Simulation

The econometric procedure for estimation and
testing of partial moments involves splitting the
sample into subsamples above and below the
reference point, so it is important to consider
the performance of the tests proposed for sta-
tistical significance of partial moments and for
symmetry. To this end, Monte Carlo simula-
tions were performed using combinations of
three data-generating processes (DGPs) and
two functional forms. I use the notation t(m)
for a variate following a standard triangu-
lar distribution on [0, 1] with mode m, and
z for a standard normal variate. Exogenous
variables are generated as x1 = 1 + exp(1 +
log t(.5))/1.4, x2 = 1 + exp(1 + z)/3.8, produc-
ing right-skewed distributions typical of input
data from a sample of farms. The production
function is specified with an additive error
defined according to one of the following
DGPs:

DGP1: e1 ∼ 3(t(0.5) − 0.5).
DGP2: e2 = e1 − δη + (1 − δ)ϕ, δ = 1 if z < 0

δ = 0 otherwise,
η2 = 5 + 0.5 log(x1) + 0.5 log(x2), ϕ2 =
5 + log(x1) + log(x2)

DGP3: DGP2 with η2 = 5 + 0.5 log(x1) +
1.5 log(x2), ϕ2 = 5 + 1.5 log(x1) +
0.5 log(x2)
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Table 1. Size and Power of Tests for Partial Second-Moment Functions

Model

1 2 3 4 5 6 7

DGP 1 2 2 3 3 4 4
Function SLF SLF CEF SLF CEF SLF CEF

Sample Size = 100
ϕ = 0 0.07 0.99 0.77 0.98 0.70 0.64 0.85
η = 0 0.06 1.00 0.80 1.00 0.91 0.56 0.71
η = ϕ 0.07 0.04 0.22 0.66 0.54 0.58 0.71

Sample Size = 300
ϕ = 0 0.05 1.00 1.00 1.00 0.98 0.85 0.93
η = 0 0.04 1.00 1.00 1.00 1.00 0.99 0.95
η = ϕ 0.05 0.03 0.25 1.00 0.90 0.98 0.91

Sample Size = 500
ϕ = 0 0.05 1.00 1.00 1.00 1.00 1.00 0.97
η = 0 0.04 1.00 1.00 1.00 1.00 0.99 0.98
η = ϕ 0.04 0.03 0.19 1.00 0.98 1.00 0.95

Note: ϕ = 0 and η = 0 are tests for zero slope coefficients, ϕ = η is test for equality of negative and positive partial moment coefficients. Figures are the percent
of likelihood ratio statistics exceeding the nominal 5% critical value. Bold indicates cases where the null hypothesis is false. Data-generating processes (DGPs)
are defined in the text. CEF = constant elasticity functional form; SLF = semi-log functional form.

DGP4: e3 = q2 − μ1(x1, x2), q2 = q.5
1 x.5

2 +
δq1 + (1 − δ)x2 + t(0.1), q1 = x1
+ t(0.1)/x1
δ = 1 if t(.9) < 0.5, δ = 0 otherwise,
μ1(x1, x2) = quadratic function of x1
and x2.

The two functional forms used for estima-
tion are the constant elasticity function CEF =
exp(γ0 + γ1 ln x1 + γ2 ln x2) and the semi-log
function SLF = log(CEF). The model parame-
ters and error variances were scaled to produce
model fits that are similar to the case study of
Ecuadorian potato production presented in the
next section.

Table 1 presents the results of the Monte
Carlo analysis of seven models replicated 1,000
times for sample sizes of 100, 300, and 500.
Likelihood ratio test statistics were computed,
based on SUR estimates using the procedure
described above. Model 1 represents the case
of an additive-error production function with
an i.i.d. error. The table shows the results from
the SLF, but very similar results not shown
here were obtained with the CEF function,
producing test sizes very close to the nominal
significance level for all sample sizes. Models 2
and 3 represent SLF and CEF functions used
to estimate DGP2, a symmetric heteroskedas-
tic process. The SLF function produces tests
with high power and sizes slightly less than
the nominal test size of 5% at all sample sizes,
even for the small sample size of 100. This

shows that when the functional form is a good
approximation to the true function, the test
performs extremely well. This was also con-
firmed by examining the distributions of the
parameter estimates, which were symmetri-
cally distributed around the true values. Model
3 shows that when the functional form is dif-
ferent than the true one, the power is high for
sample sizes of 300 and 500, but the size of the
test is in the range of 20–25%, indicating that
the risk of aType I error is higher than indicated
by the nominal size of the test. This finding
suggests that in the realistic case of some spec-
ification error, tests will tend to reject the null
too often, and conservative test sizes should
be used. Models 4 and 5 repeat the tests using
SLF and CEF with the parameters of the DGP
modified so that the distribution is asymmetric
and heteroskedastic. The results show that the
tests for slope significance are quite powerful
even with the small sample size of 100, and the
symmetry tests are powerful for the 300 and
500 sample sizes. Finally, Models 6 and 7 are
designed to represent a DGP similar to those
illustrated in figure 1, with a nonlinear produc-
tion function and stochastic inputs generating
skewed output distributions similar to those in
figure 2. The results show that the slope and
symmetry tests are powerful for the 300 and
500 sample sizes. We can conclude that the pro-
posed tests may lack adequate power for small
sample sizes, but power increases rapidly with
sample size, and is high for samples of 300 or
more.
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Asymmetric Effects of Inputs on Output
Distributions: The Case of Ecuadorian
Potato Production

In this section the methods presented above
are applied to data collected in the Carchi
Province of northern Ecuador in a study of
economic, environmental, and health effects
of pesticide use in potato production (Antle,
Capalbo, and Crissman 1998). These data pro-
vide a useful test of the effects of inputs on
the output distribution because farmers face a
substantial degree of production risk in Carchi
potato production—they invest heavily in seed
and fertilizer and face potentially catastrophic
losses from the late blight disease, which is
prevalent in the Carchi region. Carchi farm-
ers typically apply a combination of fungicides
and insecticides more than seven times during
the growing season to control late blight and
important insect pests such as theAndean wee-
vil. In addition to the methodological interest,
the issue of the risk effects of inputs is of inter-
est in its own right. In fact, there do not appear
to be any studies of the risk effects of fungi-
cide use in potato production, even though late
blight is an important global disease. More-
over,studies of fertilizers have produced mixed
results, and empirical generalizations are lack-
ing despite the obvious importance of nutrients
to crop agriculture (e.g.,Isik and Khanna 2003).

Another advantage of using this case study to
demonstrate the proposed econometric meth-
ods is data quality. These data were collected
using a dynamic survey methodology with
quality control to ensure data accuracy. Skilled
enumerators interviewed farmers on a monthly
basis to collect information about input use,
output was measured in the field at harvest,
and data quality was assured using follow-
up to investigate observations that appeared
to involve respondent error or coding error.
This type of procedure is particularly important
for accurate measurement of input use such
as fungicides and insecticides, because farm-
ers use many different commercial formula-
tions and often combine them into a mixture
of several products. In addition, the fungi-
cide and insecticide data were quality adjusted
using hedonic methods to account for the
various types of chemicals used. This quality-
adjustment issue is critical for many types of
pesticides, because recommended application
rates can differ in some cases by orders of mag-
nitude across different chemical types used to
treat a given pest. Many pesticide productivity

studies do not address the quality-adjustment
issue; furthermore, many farm surveys rely on
farmer recall (as opposed to periodic inter-
views), which increases the likelihood of mea-
surement errors in input quantities. Accurate
output measurement is important for risk anal-
ysis, because errors in output measurement
result in errors in residuals, which are then
squared or cubed, thus magnifying errors and
distorting inferences.

The data used in the analysis are summa-
rized in Table 1. The output variable is potato
yield, adjusted for quality using a hedonic pro-
cedure (Antle, Capalbo, and Crissman 1998).
Explanatory variables are land (size of field),
hired labor (land preparation and prehar-
vest labor for input application), mineral fer-
tilizer, quality-adjusted quantities offungicide
and insecticide, and a dummy variable indi-
cating whether the previous crop was potato.
Two dummy variables were also included in
the model, representing the mid- and high
elevation agro-ecological zones.

An important issue in production func-
tion estimation is the potential endogeneity
of inputs that are selected during the grow-
ing season, as is typical of pesticides and the
labor inputs used for their application. Labor
for land preparation and fertilizer applications
occur before production shocks occur and are
clearly predetermined relative to output. How-
ever, an average of about seven applications
of fungicides and insecticides are made dur-
ing the growing season, so pesticides could
be endogenous. To test for input endogeneity,
the mean production function was estimated
using two-stage least squares, and a Hausman
test for endogeneity of fungicides, insecticides,
and labor was carried out, using output and
input prices as instruments. The resulting chi-
square test statistic (4.79, with 9 degrees of
freedom) did not reject input exogeneity at
any conventional significance level. This find-
ing is consistent with evidence indicating that
farmers spray regularly on a schedule, because
a late blight infestation is a potentially catas-
trophic event and late blight is highly prevalent
in this region of Ecuador (Antle, Capalbo, and
Crissman 1998).

Specification of the mean function is impor-
tant to the properties of the higher moments
estimated with residuals, so the mean func-
tion was specified as q = g[(f (x)] + e for the
additive-error model, where f (x) is a function
that is quadratic in the logs of the continuous
variables (i.e., a translog function), and g[.] was



Antle Asymmetry, Partial Moments, and Production Risk 1303

specified as either the identity or the expo-
nential function. The Ramsey reset test was
applied to the linear form and the quadratic
specification was not rejected. Both forms pro-
duced similar results, and the results based on
the exponential specification which fit slightly
better are presented here.The Jarque-Bera test
applied to the residuals from the mean function
rejects normality at better than 1%, and skew-
ness and kurtosis coefficients are individually
significant at 1% and 5% levels.

The second full and partial moments, and
the third partial moments, were specified in
constant-elasticity form. A constant-elasticity
functional form cannot be used for the full
third moment because the dependent variable
is the cubed residual, which has both posi-
tive and negative values. Other studies have
used a quadratic function which allows for
both positive and negative values of the depen-
dent variable (e.g., Antle and Goodger 1986;
Groom et al. 2008), but the quadratic is param-
eter intensive and prone to muticollinearity
problems, so the SLF form was used with the
dependent variable scaled by its mean so the
parameters are elasticities.

The previous section showed that the cumu-
lative probability function �(x) is a function
of x, and derivation of full-moment elastici-
ties from partial moments requires estimates
of this function’s derivatives (equation (8)).
This cumulative function can be estimated
using several specifications. For this case it
was specified as a linear probability model
δ = h(x) + u and as a logistic regression δ =
1/(1 + exp(h(x)) + u, where h(x) is a polyno-
mial in x and δ = 1 if e < 0 and δ = 0 otherwise.
However, the results were statistically insignif-
icant and are not presented here. As a result,
in constructing tests and in the analysis of the
model,� was set equal to its sample mean value
of 0.42.

In addition to the tests for their significance
and symmetry, the partial-moment functions
can be used to test for restrictions implied
by location-scale distributions. This is of inter-
est because location-scale distributions have
been used in a number of empirical produc-
tion studies, following the model with multi-
plicative heteroskedasticity proposed by Just
and Pope (1978). Antle (1983) observed that
this model imposes restrictions across sec-
ond and all higher-order moments, of the
form μ∗

i = (i/2)μ∗
2, where μ∗

i is the elasticity
of the ith moment with respect to an input.
Following Antle (2010), the full- and partial-
moment functions in equations (13), (14), and

(15) can be specified in multiplicative error
form, thus across-moment restrictions apply to
both full and partial moments in multiplica-
tive error models. Using the constant-elasticity
functional form for partial moments, these
restrictions can be tested as across-equation
restrictions on the parameters using standard
test statistics. Antle (2010) shows that location-
scale distributions imply the equality of param-
eters from additive-error and multiplicative
error models of even-order moments such as
the variance.These within-moment restrictions
were tested by jointly estimating additive-error
and multiplicative-error versions of equation
(16) using heteroskedasticity-corrected SUR,
where the multiplicative error model is imple-
mented by regressing ln |e|i on δ ln ηi(x) and
(1 − δ) ln ϕi(x). Note that these within-moment
tests can be implemented for only even-order
full moments but can be implemented for
both even- and odd-order moments using the
absolute partial moments.

Empirical Results

Table 2 presents estimates of the mean, full
second and third moments, and second- and
third-order partial-moment functions for the
Ecuadorian potato data. To simplify the pre-
sentation, Table 2 presents elasticities of the
mean function estimates from a constant-
elasticity model; these are similar to the elastic-
ities implied by the quadratic-in-logs function
that was estimated to construct the resid-
uals used to estimate the higher moments.
The second and third full-moment functions
(equation (13)) and the additive-error second
and third partial-moment functions (equation
(16)) were estimated as a two-equation SUR,

Table 2. Summary Statistics for Potato Pro-
duction, Carchi, Ecuador

Mean Std. Dev.

Yield (mg/ha) 24.93 10.99
Area (ha) 0.62 0.56
Previous crop (1 = potato,
0 = other)

0.55 0.50

Fertilizer (kg/ha) 631.02 246.82
Insecticide 1.00 0.61
Fungicide 1.00 0.75
Labor (days/ha) 33.06 24.08
Mid-zone 0.34 0.46
High-zone 0.46 0.50

Note: Number of observations = 316. Insecticide and fungicide in quality-
adjusted units normalized to have a mean of 1.0.
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weighted by their respective variance func-
tions to correct for heteroskedasticity. Likeli-
hood ratio statistics were calculated for tests
of slope parameters, the symmetry test for the
equality of the partial-moment parameters,and
location-scale tests.

The Monte Carlo results presented above
indicate that the sample size of 316 should
provide reasonable power for the hypothesis
tests of the partial-moment functions. Another
concern with using these tests is whether the
asymptotic distributions of the test statistics
are reasonable approximations to the actual
finite-sample distributions.To address this con-
cern, a variety of simulation-based (boot-
strap) procedures have been developed. An
appropriate method for the partial-moment
models, which are expected to have residu-
als with non-i.i.d. and skewed distributions, is
the “wild bootstrap” (Davidson and Flachaire
2008; Mackinnon 2009). This procedure was
used to replicate p-values for the tests pre-
sented in table 2, by comparing the statistics
in table 2 to statistics generated with residu-
als derived from the corresponding restricted
regressions with the wild bootstrap adjustment.
As shown in table 2, the empirical distributions
generally result in higher p-values. Neverthe-
less, all but one of the p-values for tests of
significance of partial-moment function slope
coefficients, for symmetry, and for between-
moment restrictions were less than 0.05, so the
inferences drawn from the statistics in table 2
based on asymptotic distributions are the same
as those based on the empirical distributions.

Table 1 shows that the symmetry restric-
tions are rejected for both second and
third moments. The within-moment tests for
location-scale are not significant, but the
across-moment restrictions are rejected. The
failure to reject the within-moment restric-
tions implied by location-scale distributions is
explained by the poor fit and low statistical
significance of the full-moment functions, and
also by the relatively small sample size. In this
case there are 133 observations for the neg-
ative partial moments and 183 observations
for the positive partial moments. The Monte
Carlo analysis by Antle (2010) showed that the
power of the within-moment test was low for a
sample size of 100 but increased substantially
with sample size and was high for a sample
size of 500. Furthermore, it is apparent from
the R2 statistics and tests for slope significance
that the partial-moment functions fit the data
better than the full moments. Most notably,
the full third-moment model is not statistically

significant and has a very poor fit, whereas the
third partial-moment functions have much bet-
ter fit and are highly significant. This result
confirms that the partial-moment specification
is particularly valuable for estimating odd-
order moments, as hypothesized earlier in the
discussion of the partial-moment specification.
We can conclude that inputs do have asymmet-
ric effects on moments, as hypothesized, and
that the output distribution is not likely to be
a member of a location-scale family.

Fertilizer’s effects on the output distribu-
tion are likely to depend on the conditions
under which it is used. In the case of north-
ern Ecuador, where climate variability is low
and water-holding capacity of the soil is high,
farmers use relatively high rates of fertilizer
application (table 1). Under these conditions,
an increase in fertilizer use can be expected to
shift the yield distribution toward the produc-
tion frontier and decrease the positive skew or
increase the negative skew of the distribution
(see figure 2). However, in shifting the distri-
bution away from zero toward the frontier, it
is not clear what effect an increase in fertilizer
use would have on the variance. Pesticides—
particularly fungicides—are expected to be
risk reducing, but there are several ways that
these effects could change the shape character-
istics of the output distribution. For an input to
be risk reducing in the three-moment expected
utility model and in the risk-value model, it
need not be variance decreasing, as shown
above (see equations (10) and (11)). If pes-
ticide inputs interact with other inputs such
as fertilizer so that higher potential yields are
realized, then variance could increase while the
skewness increases, but the input could still be
risk reducing overall. Similarly, human labor
used for input application, weeding, and culti-
vation should be risk reducing, but effects on
variance and skewness are not clear a priori.

With respect to the full moments, the mean
function shows that fertilizer and insecticides
have positive, statistically significant effects, as
expected. Both the fungicide and hired labor
elasticities are small and close to zero, suggest-
ing that they are used beyond profit maximiz-
ing levels, as would be the case if they were
risk-reducing inputs. The full variance func-
tion is decreasing in fertilizer and increasing
in fungicides and labor. The full third moment
is statistically insignificant overall, and none
of the individual coefficients is statistically sig-
nificant; the third moment was also tested
for input interactions which were also statisti-
cally insignificant. Thus, from the perspective
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of the symmetric mean-variance risk model
(equation (9)), these results would be inter-
preted as indicating that relationships between
inputs and production risk are weak,with labor
the only variable that is statistically significant,
and is risk increasing, contrary to expecta-
tions. Fungicides are found to be weakly risk
increasing but not statistically significant, thus
suggesting that fungicides have no clear effect
on production risk, contrary to expectations.
Combined with the fact that the mean produc-
tion elasticity of fungicides is near zero, the
full-moment model indicates that fungicides
have little productive value to farmers, con-
trary to expectations in this system where late
blight is a major production risk and farmers
apply large quantities of fungicides.

The partial-moment functions present a very
different picture of the risk effects of inputs.
Symmetry of the variance and third-moment
functions is strongly rejected, and both second
and third positive partial moments are statis-
tically significant. In interpreting the negative
third partial moment, keep in mind that it is
estimated as an absolute moment, so the sign
of the parameters in table 2 are the opposite of
the effect on the full moment (see equations (7)
and (8)). Examination of the parameters shows
that fertilizer has large and statistically signif-
icant effects on the positive and negative tails
of the distribution, resulting in a large reduc-
tion in skewness, consistent with the output
distribution shifting toward the frontier, sim-
ilar to case C illustrated in figure 1. Similarly,
the partial third moments show that fungicides
and labor strongly increase the positive skew of
the distribution.These effects are very different
from those implied by the full-moment model.
Referring back to figure 2, we can see that the
low-input and high-input distributions reflect
these two effects. On the one hand, fertilizer
shifts the mass positively but maintains some
mass in the lower tail, thus reducing skewness;
on the other hand, fungicides and labor extend
the positive tail and truncate the negative tail,
thus increasing skewness.

To investigate the behavioral implications of
these results, table 3 presents the MREs of
inputs calculated as percentages of expected
returns, using equations (9), (10), and (11). For
the calculations in table 3, the Arrow-Pratt
partial risk aversion coefficient was set equal
to 1, and the downside partial risk aversion
coefficient was set equal to 2, consistent with
estimates of these parameters in the litera-
ture (e.g., see Antle 1987; Di Falco and Chavas
2009). The risk-value model was specified with

Vη = 1 and Vφ = 0.5, thus implying the same
level of risk aversion as the Arrow-Pratt coef-
ficient in the expected utility model, if input
effects on variance are symmetric (table 4).

When interpreting the implications of the
expected utility model and the risk-value
model, it is important to keep in mind that
the two models attach value to asymmetry
in different ways. In the case of the two-
moment expected utility model, the estimates
in table 3 imply that fertilizer is necessarily
a risk-reducing input because it reduces vari-
ance. However, in the case of the risk-value
model, the value of this variance reduction
depends on the behavior of the positive and
negative partial second moments. The data
show that fertilizer reduces variance primar-
ily by reducing the positive partial moments
and increasing the negative partial moments,
thus having a net risk-increasing effect (third
column of table 3). The risk-value model also
shows that fungicides and labor are risk reduc-
ing, as expected, whereas the mean-variance
expected utility model implies that they are
risk increasing. Insecticides show small MREs
for both models. Field size (area) and previous
crop have small negative risk effects according
to the risk-value model, whereas the expected
utility model implies that area is risk increas-
ing and previous crop (indicating that previous
crop is potato) is risk reducing.

Another way to check for the consistency of
the decision models with theory is to compare
the signs of the mean production elasticities
with the MREs. The model shows that mean
production elasticities of fertilizer and insecti-
cides are positive and statistically significant,
whereas the mean elasticities of fungicides
and labor are near zero. From a behavioral
perspective, this situation is consistent with fer-
tilizer and insecticides being either marginally
risk neutral or marginally risk increasing and
with fungicides and labor being marginally risk
reducing.The data in table 3 show that the signs
of the MREs derived from the expected util-
ity models are inconsistent with the signs of
the mean production elasticities for all of the
inputs, whereas the risk value model is consis-
tent with them. An interesting implication of
these findings is that the expected utility model
implies that farmers are overusing fungicides,
in the sense that the mean marginal product
is near zero and the MRE of fungicides is
positive. In contrast, the risk-value model is
consistent with rational use of fungicides by
farmers, in the sense that a negative MRE is
consistent with a low mean marginal product.
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Table 3. Heteroskedasticity-Corrected SUR Estimates of Full- and Partial-Moment Function
Parameters for Ecuadorian Potato Production

μ1 μ2 μ3 η2 ϕ2 η3 ϕ3

Intercept 0.053 −4.12 −9.73 −6.88 −4.96 −10.53 −5.76
(0.19) (−2.33) (−0.60) (−4.10) (−3.22) (−4.67) (−3.35)

Area 0.010 0.166 0.122 0.085 0.231 0.177 0.267
(0.61) (1.58) (0.13) (0.86) (2.36) (1.44) (2.46)

Previous crop −0.010 −0.156 −0.163 −0.278 −0.330 −0.438 −0.460
(−0.31) (−0.93) (−0.09) (−1.55) (−1.92) (−1.78) (−2.25)

Fertilizer 0.189 −0.056 0.734 1.00 −.537 1.820 −0.699
(5.16) (−0.23) (0.37) (4.40) (−2.36) (5.59) (−2.64)

Insecticide 0.142 −0.036 −1.01 −0.139 −0.342 −0.177 −0.454
(6.49) (−0.28) (−0.81) (−1.17) (−2.77) (−1.20) (−3.22)

Fungicide 0.002 0.181 0.351 −0.125 0.427 −0.306 0.536
(0.11) (1.75) (0.43) (−1.82) (4.07) (−4.42) (4.18)

Hired labor −0.014 0.358 −0.055 0.078 0.479 0.120 0.543
(−0.64) (2.60) (−0.04) (0.59) (3.69) (0.70) (3.65)

Mid-zone 0.052 0.264 −1.072 0.193 −0.082 0.370 −0.225
(1.07) (1.15) (−0.68) (0.72) (−0.44) (0.82) (−1.08)

High-zone 0.189 0.282 −2.153 0.762 −0.130 1.205 −0.251
(4.06) (1.24) (−1.15) (2.94) (−0.71) (2.78) (−1.25)

R2 0.266 0.080 0.012 0.084 0.144 0.143 0.150
Likelihood ratio
parameter tests
Slopes = 0 129.6 18.4 2.9 32.9 36.0 75.5 35.8

(<.01/<.01) (.02/.07) (.94/.96) (<.01/0.10) (<.01/.04) (<.01/<.01) (<.01/.05)
Symmetry 54.0 45.8

(<.01/.02) (<.01/.02)
Location-scale
Within-moment 14.7 2.9 14.9 4.2

(.06/.30) (.94/.96) (.07/.37) (.83/.88)
Between-moment 66.6 64.3

(<.01/.04) (<.01/.02)

Notes: t-Statistics are in parentheses below parameters. Asymptotic/bootstrapped p-values for likelihood ratio tests are in parentheses below slope, symmetry
and location-scale test statistics. Number of observations for full moments = 316; for negative partial moments = 133; and for positive partial moments = 183.
SUR = seemingly unrelated regression.

In conclusion, these results show that
the hypothesis of symmetric input effects is
strongly rejected, as are the between-moment
restrictions implied by a location-scale distri-
bution. The results also show that the partial-
moment model does a better job of repre-
senting the effects of inputs on the changes
in the symmetry of the output distribution,
in terms of both second and third moments.
The partial-moment models provide greater
insight into the relationship between inputs
and the shape characteristics of the output
distribution and show that inputs often have
different effects on positive and negative tails
of the distribution that are obscured by the
full-moment models. Moreover, the expected
utility model and the risk-value model have
opposite implications for the risk effects of
fertilizer, fungicides, and labor inputs. The risk-
value moment model provides an explana-
tion for the counter-intuitive results produced

Table 4. Marginal Risk Effects (MREs)
of Inputs for Ecuadorian Potato Production
Implied by the Expected Utility Model and the
Risk-Value Model (percent)

Expected Utility

MRE2 MRE23 Risk-Value

Area 6.3 5.8 −0.8
Prev crop −5.9 −6.6 −0.4
Fertilizer −2.1 −5.8 14.0
Insecticide −1.4 2.7 1.1
Fungicide 6.9 5.5 −4.4
Labor 13.6 13.8 −2.7

Notes: MRE2 = mean-variance model; MRE23 = mean-variance-skewness
model.

by the expected utility model, and is consis-
tent with the hypothesis that fertilizer is risk
increasing and that fungicides and labor are
risk reducing.
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Conclusions and Implications

This article discusses the conceptual basis for
asymmetric effects of inputs on output distri-
butions and how those effects can be related
to models of decision making. The concep-
tual analysis of the relationship between inputs
and the shape of output distributions showed
that inputs are likely to have different effects
on positive and negative tails of distributions.
Moreover, the risk-value model shows that the
effects of inputs on partial moments of output
distributions can result in different marginal
risk effects of inputs than full-moment mod-
els. Econometric methods are presented for
estimation of partial-moment functions, and
partial-moment tests for input symmetry and
for restrictions implied by location-scale distri-
butions are developed. A Monte Carlo study
indicated that these tests may be powerful in
sample sizes of 300 or larger.

Data from a potato producing region of
northern Ecuador were used to illustrate the
application of these methods and to investi-
gate the risk effects of inputs in this system.
The results reject the restrictions of partial-
moment symmetry and the between-moment
restrictions implied by location-scale distribu-
tions. The results also show that inputs can
have substantially different effects on positive
and negative tails of distributions and that the
full third moment may not provide an accu-
rate representation of the effects of inputs on
the asymmetry of the output distribution. This
result is likely due to the fact that the full third
moment cannot effectively represent both pos-
itive and negative deviations from the mean in
one functional relationship. Thus, the econo-
metric results confirm that the partial-moment
specification provides a better statistical rep-
resentation of the output distribution than a
full-moment specification,particularly for odd-
order moments such as the third.The case study
also showed that the expected utility model
based on full moments may have different risk
implications than a risk value model based on
negative and positive partial moments.

In this article asymmetry of second and
third moments was considered. More gener-
ally, the fourth moment (kurtosis) also could
be considered. Indeed, the statistics for the
Ecuadorian potato yield distribution showed
that the degree of kurtosis increased with the
levels of input use (see figure 2),suggesting that
if decision makers are averse to extreme out-
comes, it may be useful to extend the model to
the fourth moment. Another example where

fourth moments may be relevant is in research
on changes in environmental conditions, such
as climate change, which have been hypothe-
sized to lead “fat-tailed” distributions. How-
ever, to reliably study the properties of the
tails of distributions, large samples of high-
quality data are likely to be necessary. This
remains a potentially important topic for fur-
ther research, perhaps using both Monte Carlo
methods as well as new and better data.

Just and Pope (2003) observed that a limita-
tion of many econometric models of produc-
tion risk is that restrictive assumptions about
the form of the output distribution and produc-
ers’ objective functions are needed to secure
identification of technology parameters and
risk attitude parameters. The partial-moment
model, by providing a flexible and empirically
tractable way to estimate the effects of inputs
on asymmetric output distributions, presents
an opportunity to advance the empirical under-
standing of how management decisions affect
production risk. The risk-value model also
appears to provide a simple but flexible way
to represent risk preferences with asymmet-
ric distributions using partial moments. Further
research is needed to determine which par-
tial moments are important to decision mak-
ers, and whether the mean is the appropriate
reference point. It may also be possible to uti-
lize the moment-based econometric methods
to estimate parameters of a risk-value model
along the lines of the approach developed by
Antle (1987) for full moments. In doing so,
researchers should note the results presented
by Lence (2009), suggesting that econometric
estimation of risk attitudes may be unreliable
unless data represent sufficiently large and
asymmetric risks. The results reported here
indicate that yield risk caused by the late blight
fungus in potato production is an example of
this type of risk.
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